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Simulation study of nucleation in a phase-field model with nonlocal interactions
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We examine the phenomenon of nucleation in a two-dimensional phase-field model in order to calculate
quantities associated with a field-theoretic model and to determine the impact of spatially nonlocal interactions
on both droplet morphology and nucleation rate. We use an approximate numerical technique, together with
modelA Langevin dynamics, in order to characterize the saddle surface that separates stable and metastable
states in function space. We thus obtain the free energy of formation of a critical droplet as well as the
statistical prefactor, which, except for a dynamical prefactor, determine the nucleation rate. The standard
Ginzburg-Landau energy is employed and, in addition, we consider the role of a short-range, spatially nonlocal
interaction on nucleation.@S1063-651X~98!04003-3#

PACS number~s!: 05.70.Ln, 64.60.Qb
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I. INTRODUCTION

A common feature of all metastable systems is that
decay of the metastable state is brought about by the nu
ation and subsequent growth of some localized disturba
within the system@1#. One familiar example of this phenom
enon is the transformation of water, supercooled below
thermodynamic freezing temperature, to ice by the format
of solid droplets of sufficient size within the liquid. Furthe
in some magnetic systems below the Curie temperature,
found that a carefully prepared metastable state in wh
spins are mostly antialigned with an external field will tran
form into a more stable state by the formation of ‘‘droplet
of spins aligned with the field.

Given the importance of describing nucleation and grow
processes in a variety of systems, there has been a grea
of work in this area. For example, a firm theoretical und
standing of the decay of metastable states was establishe
Becker and Do¨ring @2# who derived an expression for th
nucleation rate by investigating the kinetics of cluster form
tion using a rate equation formalism. Modern theories
cluster dynamics are extensions and improvements of
Becker-Döring approach, which have established scal
theories of nucleation and led to some understanding of
link between nucleation and spinodal decomposition@3–5#.
On the semimacroscopic scale, Langer@6# has developed a
field theoretic approach to the description of nucleat
based on nonlinear Langevin equations, which correspon
simple critical dynamics models. This approach has b
used to study such problems as liquid-vapor transitions@7#
and the nucleation of a crystalline solid from its melt@8#.
These problems have also been studied by many auth
including those using density functional@9,10# and other ap-
proaches@11#. Indeed the literature in this field is too exte
sive to be reviewed in this work.

While a theoretical framework for describing both hom
geneous and heterogeneous nucleation is in place, it is fa
say that there have been comparatively few definitive test
the main predictions of these theories, particularly in syste
571063-651X/98/57~3!/2610~8!/$15.00
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with long-ranged interactions. There are many reasons
this, such as the practical experimental difficulties enco
tered in determining nucleation rates, the interpretation
these rates near critical points, the difficulty of measur
surface tensions, the breakdown of the independent dro
approximation due to interactions, etc. In the case of bin
fluids, for example, a typical experimental determination
nucleation rates as a function of undercooling and supers
ration involves the identification of a cloud point at which
detectable number of droplets is formed. Such an identifi
tion is inherently ambiguous as it depends on the time sc
of experimental observation. Further, in the vicinity of
critical point, it is necessary to take into account the effec
critical slowing down on droplet evolution@12#. In the case
of nucleation in solids, while it is known that long-range
elastic interactions can modify the driving force for nucl
ation, the associated modification of the nucleation rate is
well understood. In addition to experimental tests of nuc
ation theory, several workers have recently investiga
nucleation theoretically in kinetic Ising ferromagnets wi
the aim of testing the aforementioned field-theoretic mod
@13#.

With these limitations in mind, we examine here nuc
ation in a two-dimensional phase-field model in order to d
termine the impact of spatially nonlocal interactions on dro
let morphology and nucleation rate. This will b
accomplished by using computer simulation in conjunct
with rate theory to constrain the system to be at a sad
point in function space. The utility of this approach becom
apparent when one considers the statistical uncertainties
sociated with observing spontaneous droplet nucleation
dynamic simulation. Indeed, numerical calculations of nuc
ation rates in condensed systems must also account fo
fact that nucleation is a rare event on the time scale o
simulation, particularly at small undercooling@14#.

Now, from the geometric properties of the saddle surfa
we obtain all but the dynamical part of the nucleation ra
both with and without nonlocal interactions. It is of intere
to determine how such interactions modify the saddle surf
2610 © 1998 The American Physical Society
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57 2611SIMULATION STUDY OF NUCLEATION IN A PHASE- . . .
and under what circumstances it is possible to renorma
the system in order to mimic the interaction-free pictu
Specifically, we find that in the presence of a nonlocal int
action it is possible to describe the formation free energy
radius of a critical droplet in terms of standard field-theore
expressions@6# for sufficiently large droplets as long as th
range of the interaction is smaller than the approxim
width of the droplet. Further, by determining the curvature
the saddle surface, we are able to predict how the nuclea
rate will be altered by the nonlocal interaction. Given th
information, we also determine the magnitude of the app
field required to maintain a metastable droplet. Finally,
consider the case of multiple droplets and assess the do
of validity of an independent droplet picture.

An essential part of our work is an approximate numeri
technique that we use to facilitate the calculation of the pr
erties of the saddle point. This calculation yields the fr
energy of formation of the critical droplet and the statistic
prefactor, which, together, determine the nucleation rate
within a dynamical prefactor. It should be emphasized t
our focus here is on the development of numerical te
niques that are applied to a model of nucleation and gro
in order to extract important nucleation parameters. T
model is a practical extension of the simplified sha
interface description of a critical nucleus and incorpora
the spatial diffuseness of the interface.

This paper is organized as follows. In Sec. II the fie
theoretic model of nucleation and our simulation method
ogy are summarized. In particular, an expression for
nucleation rate as a function of various model parameter
presented. Section III contains our basic results and inter
tations for the standard Ginzburg-Landau~phase-field!
model as well as for a short-range model of spatially non
cal interactions. Section IV consists of a discussion and so
conclusions.

II. NUCLEATION THEORY AND SIMULATION
METHODOLOGY

Consider a simplified model of a two-phase syst
wherein a continuous, nonconserved order parameter
c(rW) distinguishes between these phases. This field emb
ies a coarse-grained description of the constituent phase
that it represents a local volume average of an impor
slow variable which characterizes the system. The dynam
of this model is given by the spatial and temporal evolut
of this field as described by a prescribed equation of mot
Further, the system under consideration can be subjecte
an external field~i.e., driving force!, which biases the evolu
tion and, in effect, determines the relative stability of t
phases.

It is of interest here to examine nucleation in this syst
and, in particular, to determine the impact of spatially no
local interactions on critical droplet shape and the associ
nucleation rate. While this will not be done in complete ge
erality, it is possible to quantify the effects of a short-rang
interaction and to investigate numerically the importance
the range of the interaction in this problem. It is assumed
these nonlocal interactions are mediated by some G
function that connects the phase field at different points
space. For example, others have used appropriate l
e
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ranged elastic and electrostatic Green functions to disc
oxygen ordering in superconducting oxides@15# and trans-
formation strains in ordered intermetallics@16#.

It is assumed thatc(rW) evolves according to the phenom
enological Langevin equation appropriate for a nonco
served order parameter given by

]c~rW,t !

]t
52G

dF

dc~rW,t !
1z~rW,t !, ~1!

whereG is a rate constant that sets the time scale for ph
evolution,F is a free energy functional to be specified, andz
is a noise term, which represents a heat bath. This equatio
characteristic of modelA, which is used extensively in criti-
cal dynamics studies@17#. Thus, a free energy functional i
required, and we begin by employing

F@c#5eE ddr F1

2
~¹c!21V~c!2hc G

2
e

2 E E drW drW8G~rW2rW8!c~rW !c~rW8!, ~2!

where the effective double-well potential is given by

V~c!52
t

2
c21

g

4
c4, ~3!

t andg are parameters,e is an energy coefficient~taken to be
unity!, h is an applied field andG(rW2rW8) is an interaction
Green function to be specified later. The first term in Eq.~2!
is the ‘‘Ginzburg-Landauc4’’ free energy while the second
term models a spatially nonlocal interaction mediated
G(rW2rW). Physically,h would correspond to an undercoolin
in the case of a supercooled liquid or to an external magn
field in the case of a ferromagnet. With these assumpti
the dynamical equation of motion for this system is

]c~rW,t !

]t
5GS ¹2c~rW !1h1tc~rW !2gc3~rW !

1E drW8G~rW2rW8!c~rW8! D . ~4!

A. Local interaction

Before considering a nonlocal interaction it is useful
first consider critical droplet formation in a spatially loc
model. It will be seen that the results for the local model w
aid in the interpretation of the results for the nonlocal mo
over a spatially limited interaction range.

The local model @i.e., G(rW)50# supports a time-
independent planar interface given appropriate far-fi
boundary conditions. So, if one seeks a functionc̄(rW) that
extremalizesF subject to the conditions thatc(z→6`)5
6At/g one finds that

c̄~z!5S t

gD 1/2

tanhF S t

2D 1/2

~z2Z!G , ~5!

whereZ is the location of the front and it has been assum
that h50. This interface is, in general, diffuse with a cha
acteristic width;t21/2. Our focus in this work is on the
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2612 57A. ROY, J. M. RICKMAN, J. D. GUNTON, AND K. R. ELDER
formation of droplets, and so we will consider only relative
large droplets for which small interfacial boundary eleme
are locally well described by planes. Consequently, in t
limit, Eq. ~5! holds approximately in the radial directio
upon making the substitutionsz→r andZ→R.

Now, in order to discuss droplet formation it is helpful
calculate the formation free energy of a droplet and ot
quantities that characterize droplet shape. From a knowle
of these droplet properties Langer@6# has determined a
nucleation rate. This was first accomplished by consider
the difference in free energy between a system with
without a droplet defined by

DF5F@c̄#2F@c ref#, ~6!

wherec ref is the spatially uniform field of the reference sta
Upon expanding this difference in powers of the fieldh, one
finds to first order that

DF'22At

g
hVd1sSd , ~7!

where the surface tensions is given by

s5
2&t3/2

3g
, ~8!

and thed-dimensional volume and surface areas are given

Vd5
Rd2pd/2

dG~d/2!
, ~9!

Sd5
Rd212pd/2

G~d/2!
, ~10!

respectively. From these results the radiusRc and formation
free energyDFc of a critical droplet can by found be mini
mizing DF with respect toR to obtain

Rc5
&t~d21!

3hAg
, ~11!

DFc5
4td11/2

gd/211/2hd21 SA2p

3 D d
~d21!d21

dG~d/2!
. ~12!

One goal of the present study is to determine the nu
ation rateI given t, g, and the applied fieldh. As the for-
mation of critical droplets is an activated process, this rat
determined by the attributes of the saddle surface that s
rates stable and metastables states. It turns out that

I 5I 0 expF2DFc

kT G , ~13!

whereI 0 depends on the local geometry of the saddle surf
and a kinetic prefactor. The relevant geometrical feature
the saddle surface are measures of curvature and can b
tained by considering small excursions from the saddle p
in function space. That is, one imagines the change in
energy associated with the fluctuation
s
s

r
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u~rW !5c~rW !2c̄~rW !. ~14!

One then finds that

F@c#5F@c̄#1
1

2 E E drW drW8u~rW !M ~rW,rW8!u~rW8!1••• ,

~15!

where the operatorM is

M ~rW,rW8![S d2F

dc~rW !dc~rW8! D
c̄

. ~16!

Given the quadratic form above, it is clear that the eige
value spectrum ofM will effectively characterize the saddl
surface in the vicinity of the saddle point. Physically, o
would expect thatd of these eigenvalues are zero, corr
sponding to translations of the critical droplet. These mo
arise from the broken translational symmetry in the probl
and are not expected to affect the nucleation kinetics.
addition, the saddle point implies the existence of one ne
tive eigenvalue, denoted here asl0 . It can be expressed in
terms of the model parameters by

l052
1

Rc
2 52

9h2g

2t2~d21!2 . ~17!

All remaining positive eigenvalues, denoted byl i ( i
.0), are frequencies associated with distortions of the c
cal droplet. Thus one can regard the prefactorI 0
5I 0(l0 ,l i ,T,G,V), whereV is the volume of the system.

Langer@1,6# has determinedI 0 explicitly for this model in
the limit of a small applied fieldh. In particular he found
that this prefactor can be expressed in terms of a produc
a dynamical prefactor,k, and a statistical factor,V0 , as

I 05
uku
2p

V0 , ~18!

where

V05VS 2pkBT

ul0u D 1/2S det~M0/2pkBT!

det~M 8/2pkBT! D
1/2

, ~19!

and whereV is proportional to the system volume,M0 is a
generalization of Eq.~16! in which the derivative is to be
evaluated in the reference state, and the prime indicates
only the positive eigenvalues were used to compute the
terminant. The dynamical factor describes the initial rate
decay of the metastable state and can be related to the n
tive eigenvaluel0 if the system is maintained at fixed tem
perature and the nature of the coupling of the system to
required heat bath is known. For the system under consi
ation here, the rate constantG in the Langevin equation@Eq.
~1!# sets the time scale for the evolution of a critical dropl

It should be pointed out that the numerical determinat
of the spectra ofM and M0 can be quite computationally
demanding in a discretized version of the system conside
here as the dimensions of the matrix representations of th
operators are often quite large. Thus, it is advantageou
consider projections of these matrices onto subspaces a
ciated with a region near some real or fictitious interface. I
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57 2613SIMULATION STUDY OF NUCLEATION IN A PHASE- . . .
expected that the eigenvalues of these submatrices will
tain the most relevant information about the interface. T
practical implementation of this procedure is discussed
Sec. III.

B. Nonlocal interactions

The impact of a spatially nonlocal interaction on nuc
ation will depend, in general, on the magnitude and range
the interaction. For simplicity here we consider the effect
a prototypical interaction of variable range. Our goal is
highlight the generic features of the interaction which al
nucleation kinetics rather than to model specific types
physical interactions.

For this purpose it is convenient here to adopt a Gr
function of the Yukawa form, which, in reciprocal space,
given by the Fourier transform@18#

G~k!5
1

k21g
, ~20!

whereg is ~inversely! related to the range of the interactio
Now, the behavior ofG(k) near the center of the first Bril
louin zone is given by the Maclaurin series expansion of
Green function

G~k!5
1

g
2

1

g2 k21
1

g3 k41••• . ~21!

If the interaction range is relatively short or, equivalently,
g is sufficiently large, it should be possible to use the a
proximationG(k)'1/g2(1/g2)k2 as kW can be restricted to
the first Brillouin zone. Upon substituting the inverse Four
transform of this approximate expression into Eq.~2! and
using the convolution theorem one finds that the effect of
interaction when the free energy is extremalized is the
proximate renormalization of the parameterst, g, andh de-
fined by

t̄5
t11/g

111/g2 , ~22!

ḡ5
g

111/g2 , ~23!

h̄5
h

111/g2 . ~24!

Thus, in this limit, the equations describing the interface p
file and the eigenvalues ofM also describe the system wit
nonlocal interactions provided thatt, g, andh are replaced
by their respective counterpartst̄, ḡ, andh̄. It then follows
that the critical radiusRC , the eigenvalues ofM , and the
formation energyDFC can be determined by replacingt, g,
andh by their corresponding renormalized values in Eq.~11!
@19#. The range of validity of these approximations will b
investigated in Sec. III.

C. Simulation methodology

In order to investigate the field-theoretic model, we ha
solved a spatially discretized version of the relevant Lan
n-
e
n

-
of
f

r
f

n

e

-

r

e
-

-

e
-

vin equation@Eq. ~1!# without noise. This was accomplishe
by defining the order-parameter fieldc(rW) on a 1283128
square lattice, with lattice parametera, subjected to periodic
boundary conditions. Given a prescribed initial condition, t
field then evolved according to modelA dynamics, reaching
a stable or metastable state at long times. In addition
some cases it was useful to construct the corresponding
ciprocal lattice and perform some bookkeeping operation
this Fourier space, back transforming to real space as
quired. In particular, the formulation of the problem in reci
rocal space is especially well suited to the study of nonlo
interactions mediated by a Green function. Finally, it is co
venient to introduce the dimensionless time and mesh
variablest̄5Get andd5Dx/a, respectively, and to indicate
that the time step and mesh size used were 0.001 and 0
these units.

The initial condition in our simulations corresponded to
nearly circular droplet, the square lattice frustrating circul
ity, of some stable phase (c'11) embedded in a meta
stable (c'21) background. Given the input parameterst,
g, and h such a droplet will grow~shrink! if it is larger
~smaller! than some critical radius. As our goal was to inve
tigate the properties of a critical droplet, we introduced
droplet of a given radius at zero temperature and varied
field h until this state was~meta!stable at late times. It was
helpful here to allow the field to correctively adjust with
our algorithm so as to more efficiently generate a criti
droplet. In effect, we induce the system to be at a sad
point so that we may characterize the local geometry n
this region of function space.~In this sense, the calculatio
here is reminiscent of the rate-theoretic numerical deter
nation of diffusion coefficients in solids wherein a diffusin
particle is constrained to be at or near a saddle surface s
rating lattice equilibrium states@20#.! The droplet radius, de-
fined as the average of the distances between interface p
and droplet center, and formation energy were monito
over the course of the simulation, and this zero-tempera
metastability requirement implied that these quantities w
nearly constant over a time period of sufficient duration.
order to minimize the effects of the periodic boundary co
ditions, the radii selected were such that the associated d
let interface profiles did not overlap with the profiles of the
image counterparts.

III. RESULTS

We studied the formation of a critical nucleus and t
nucleation rate for a system in the presence of a nonlo
interaction. In this problem, our goal was to establish
domain of validity of the renormalized nucleation pictu
outlined in Sec. II B. As discussed above, it is of interest
determine how a spatial interaction with a finite range mo
fies the droplet formation energy and the modes associ
with droplet formation. Such information will enhance o
understanding of nucleation in the kinetics of phase form
tion in systems with competing interactions@21#.

In the following we first discuss the simulations carrie
out to test the renormalization of the parameters and es
lish a range of validity. Next, we study in detail the prope
ties of the critical nucleus by examining the radial profile f
the order parameter and the behavior of the associated
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mation energy. Finally, we calculate the statistical prefac
V0 , which, along with the formation energy, effectively d
termines the nucleation rate. In all the above we mak
comparison with Langer’s theory of nucleation in the limit
a short interaction range.

A. Applied field, formation energy, and droplet profile

We first consider a system consisting of a stable dro
embedded in a metastable background with the paramete
(t,g,R)5(5.0,100.0,10.56), whereR is measured in units o
the lattice parameter. The field parameterh, which is varied
in our model to keep the droplet metastable over a lo
period of time, was measured for various interaction rang
the range being governed by our choice of the parametg
used in the Green function@Eq. ~20!# @22#. This then permits
us to examine the predictions of the renormalized nuclea
picture. Figure 1 shows the dependence of the renormal
field h̄ on the scaled interaction range,r g[( t̄/g)1/2, as de-
termined from a series of simulations and as predicted by
~11! upon replacingt and g by their renormalized counter
parts. It can be seen that the data deviates from the the
ical fit in the regime where the interaction range is of t
order of the interface width (g. t̄), as might be expected
intuitively @23#.

In the following discussion we consider metastable dr
lets with (t,g)5(5.0,100.0) and differing values ofR. Con-
sider next Fig. 2, a record of the dynamical evolution of t
system containing a droplet withR524.87, which shows the
normalized droplet formation energy (F2F ref)/DFc , where
F ref is the free energy of the spatially uniform reference st
andDFc is the ~renormalized! theoretical formation energy
as a function of time~i.e., iterations!. Several cases hav
been simulated corresponding to different interaction ran
as denoted by the scaled interaction range parameterr g . For
short-range~largeg! interactions, it is evident from the fig
ure that the normalized free energy decreases sharply at
times and is approximately unity at late times, as expec
from the field-theoretic model of nucleation. The droplet

FIG. 1. The dependence of the renormalized fieldh̄ on the
scaled interaction range,r g[( t̄/g)1/2, as determined by a series o
simulations and as predicted by Eq.~11!. Note the deviation from
the predicted behavior when the interface width is of the orde
the interaction range.
r
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dius R was also monitored during the simulation and fou
to be essentially constant over the course of the run w
R/Rc'1. The deviation in the formation energy from its pr
dicted renormalized value is seen to increase upon increa
the interaction range, with significant differences occurri
when r g'1.265 ~or g'3!. This finding is consistent with
the behavior of the renormalized fieldh̄ for different inter-
action ranges~Fig. 1!.

The time evolution of this system can be pictured by fi
recalling that, as noted above, the droplet model predic
diffuse, as opposed to a sharp, interface profile. Thus, a d
let with an initially sharp interface must thicken over th
course of a run, and this relaxation results in a reduction
the free energy and the concomitant creation of a transi
region at the droplet interface of a given width. The appro
mate shape of the interface profile, at least for relativ
large droplets, can be deduced by assuming that a given
tion of the interface is, to some approximation, a plan
front, and so the radial profile is essentially given by Eq.~5!.

This characterization is validated in Fig. 3 in which th
normalized interface profiles for the two systems with diffe
ing interactions ranges are plotted along with a hyperbo
tangent solution corresponding to a short-range interac
(r g50.224). The agreement between the actual and theo
ical profiles is seen to be excellent. It should be recalled h
that the width of the interface is;t21/2 and therefore, re-
placing t by its renormalized valuet̄ leads to a change in
width. Indeed, the profile in Fig. 3 with the more diffus
interface corresponds to a lower value ofg(50.7)

B. Nucleation rate—negative eigenvalue

Of particular interest in this study is the calculation of
nucleation rateI for a given driving forceh. As discussed in
the previous section, this calculation can be performed
determining the formation free energy~as in Fig. 2! and the
eigenvalues of the matrixM . Of particular importance is the
single negative eigenvaluel0 in that it characterizes the spe
cial geometrical features of the saddle surface. As a prac
matter, however, the diagonalization ofM here is quite com-

f

FIG. 2. The critical droplet formation energy, normalized by t
theoretical valueDFc , as a function of time~measured in itera-
tions! for different interaction ranges. The interaction ranges
given by the scaled interaction parameterr g . It should be noted that
for very short-range interactions this normalized formation ene
is nearly unity at long times, as expected.
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57 2615SIMULATION STUDY OF NUCLEATION IN A PHASE- . . .
putationally intensive, given its size of 16 384316 384, and
so we consider a smaller submatrix corresponding to th
lattice points in a narrow annular region around the interfa
The width of this annulus must be greater than the interf
width and is therefore determined by the parametert. The
rationale for adopting this approximation is that the eige
values of interest are likely to be associated with the in
face itself, and so a sufficiently wide annulus should capt
the essential physics of the problem. The justification for t
approximation was establisheda posterioriby examining the
variation of the results with the size of the annular regio
Further, an iterative search forl0 obviated the more time
consuming full diagonalization ofM .

The negative eigenvalues ofM for various radiiRC in the
limit g→` obtained with this approach are shown in Fig.
As can be seen from the figure, the data fit the expected 1RC

2

FIG. 3. The normalized order parameter vs the normalized
tance,r (t/2), for metastable critical droplets corresponding to d
ferent interaction ranges. For comparison with the short-range
teraction profile, the theoretical tanh solution@Eq. ~5!# is also shown
and the agreement between these two profiles is seen to be e
lent.

FIG. 4. The negative eigenvalues of the matrixM for a series of
critical droplet radii Rc vs 1/Rc

2. The linearity of this plot with
corresponding unit slope is expected from the field-theoretic nu
ation model@Eq. ~17!#.
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functional form predicted by Eq.~17!. One can repeat the
procedure discussed above for systems containing the no
cal interaction given in Eq.~20! and examine the dependenc
of l0(g) on the parameterg. That is, one can introduce
critical droplet into a system with a given nonlocal intera
tion and obtain the negative eigenvalue in the spectrum
the corresponding operatorM @Eq. ~16!# by numerical itera-
tion. The results of these calculations are illustrated in Fig
where the normalized eigenvalue,RC

2 l0(g) is plotted as a
function of the reduced ranger g for three different critical
radii. Once again we find that the renormalized nucleat
picture is valid for r g5( t̄/g)1/2.1.0 and therefore break
down when the interaction range is of the order of the int
face width. It is also clear from Fig. 5 that the deviation fro
the renormalized nucleation picture is dependent on dro
size, with larger deviations occurring for smaller droplets

As a check of our numerical results, it was found that t
value ofl0 was quite insensitive to the width of the annul
region for sufficiently large widths. This was true even f
the longer range interactions considered here~e.g., r g
51.736 org'0.7!

Finally, an essential feature of Langer’s theory is that
nucleating droplets are independent of each other. It is wo
investigating the conditions under which the droplets int
act, causing the theory to break down. To this end, we st
ied a system of two identical droplets of radiusRc510.56 at

TABLE I. The logarithms of det(M0) and det(M8) and the loga-
rithm of D as a function ofw ~in units of the lattice parametera! for
a droplet of radius 10.56. Note the relative insensitivity of ln(D) to
w. The parameterst and g employed here are 5.0 and 100.0, r
spectively

w ln det(M0) ln det(M8) ln(D)

21 5312.45 5141.58 170.87
25 7586.07 7415.22 170.85
30 10911.49 10740.59 170.90

s-

n-

el-

e-

FIG. 5. The normalized negative eigenvalues ofRC
2 l0(g) vs

normalized interaction ranger g for several different critical droplet
radii ~in lattice units!. Note that the normalized eigenvalues devia
from unity for an interaction range 1/Ag, which is a substantial
fraction of the interface width and that the renormalized nucleat
picture works best for larger droplets, as expected.
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a fixed r distance apart, and varied the parameterg so as to
measure the droplet formation energy and the negative
genvalue as a function of the interaction ranger g . Both
these quantities show a deviation from the correspond
independent droplet values wheng is sufficiently small@gg
'2 and the normalized distance of separationrA(t/2)
'15.2#. The negative eigenvalue was slightly more sensit
to variations in the interaction range, as might be expect

C. Nucleation rate—positive eigenvalues

From Eq.~19! it is clear that the remaining positive e
genvalues are needed in order to calculate the prefactoI 0 .
For the moment we will focus only on the case of a spatia
local interaction.

In this calculation we employed a circular calculation r
gion with a sufficiently large radius,w. In particular, two
such regions are employed, one in a spatially uniform re
ence system and an identical circular area in the corresp
ing system containing a critical droplet, and the ratio of pro
ucts of positive eigenvalues@i.e., D5det(M0)/det(M8)# is
obtained. It is expected that the eigenvalues correspondin
modes not included will not contribute significantly to th
quotient. This expectation was confirmed by calculat
ln(D) for various region radii,w, for a droplet of radius
10.56 with the results summarized in Table I. As can be s
from Table I ln(D) is relatively insensitive tow for increas-
ingly larger regions. It should be noted here that for t
smaller droplet there are deviations in the relative format
energyDF/FC50.93 from the field-theoretic prediction.

In order to get a sense of the magnitude of these num
consider ln det(M0). In this case the operatorM052¹2

12t, and so one can express ln det(M0) in terms of its spec-
trum by the approximate relation

ln det M0' (
i 52w

w

(
j 52~w22 i 2!1/2

~w22 i 2!1/2

lnF2t1
4

d2

2
2

d2 @cos~ ip/w!1cos~ j p/w!#G , ~25!

where the Fourier transform of the lattice Laplacian opera
has been employed. Forw521 the double sum is 5237.6
within about 1% of the calculated value. A more accur
calculation would take into account the small impact ofh on
M and the nonperiodicity of the region of calculation. In a
case, both ln@det(M0)# and ln@det(M)# increase essentially
linearly with the size of the calculation region, while ln(D)
involves the size of the diffuse interface region.

A more extensive investigation of the role of spatia
nonlocal interactions in the present context would, of cou
require the calculation of the full spectrum ofM . Based on
the results obtained here for the~most important! negative
-
,
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to
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eigenvalue, however, one would expect that these other n
negative eigenvalues can also be renormalized over s
interaction range.

IV. DISCUSSION AND CONCLUSIONS

The phenomenon of nucleation in a two-dimension
phase-field model with spatially nonlocal interactions h
been studied by effectively characterizing the saddle surf
that separates stable and metastable states in an ab
function space. This approach was necessitated by the
that simulations of spontaneous nucleation are essent
impractical given the time scale of such a simulation.
considering an appropriate region that properly incorpora
the diffuse interface that is characteristic of this system,
have obtained the free energy of formation of a critical dro
let as well as the statistical prefactor, which are key ingre
ents of the nucleation rate. One perhaps surprising resu
this work is that we have obtained self-consistent results
a range of droplet sizes given that the field-theoretic mo
assumes a ‘‘large’’ droplet. We have investigated the role
a spatially nonlocal interaction in determining the nucleat
rate and have interpreted the results, over a restricted ra
of interaction parameter, in terms of a renormalized nuc
ation picture.

A complete description of the nucleation rate requires,
addition to the foregoing calculations, a determination of
dynamical prefactork in Eq. ~18!. k depends on the coupling
of our system with some external heat bath. Once this c
pling is specified,k is given in terms of the negative eigen
value l0 @7# and the rate constantG, the latter setting the
time scale for the evolution of the system. Thus, given o
calculation here, it is possible to calculate the nucleation r
if the coupling to the heat bath is known.

Finally, it should be pointed out that the present disc
sion has focused on homogeneous nucleation in a sys
with an isotropic surface energy. In many realistic cases
found that the presence of defects limits the supercooling
a system as these defects often become catalytic sites fo
~heterogeneous! nucleation of a stable phase. Further, in t
case of solid-solid nucleation, the surface energy associ
with the boundary between a droplet and a metastable b
ground can be anisotropic depending upon the crystal s
metries of the phases that are involved. Thus, the sys
described in this work is somewhat idealized, and it is o
goal to extend it to more accurately describe nucleation
solids.
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